THE SCOTS COLLEGE

THURSDAY, 5 JUNE 2008

ASSESSMENT 3

YEAR 12 MATHEMATICS

GENERAL INSTRUCTIONS

- Working time 45 minutes.
- Attempt Questions 1 to 4.
- Start a new page for each Question.
- Board approved calculators may be used.
- All necessary working should be shown for every Question.

Question	Оитсоме	Mark Available	TOTAL	Mark obtained	TOTAL
4d	H1	4	4		,
3	H4	5	5		
1 2a 4a, c	Н5	8 3 2, 3	16		
2b 4b	Н9	3 2	5		
			30		

QUESTION 1 [8 MARKS]

The displacement of a particle is given by the equation $x = t^3 - 4t^2 - 3t$ where x is in metres and t is in seconds.

(a) Find the initial velocity.

[2]

(b) Find when the particle is at rest.

[2]

(c) Find the acceleration after 4 seconds.

- [2]
- (d) Show that the particle is at the origin when t = 0 and $t = 2 + \sqrt{7}$.
- [2]

QUESTION 2 [6 MARKS]

- (a) The acceleration of a particle is given by $a = -4\sin 2t$. Initially the particle is 4m to the left of the origin and the velocity is 2cms^{-1} . Find the displacement after $\frac{\pi}{4}$ seconds.
- **(b)** The velocity time graph of a moving object is shown below.

(i) Find when the object is not subject to acceleration.

- [1]
- (ii) Find the rate of deceleration when the object is slowing.
- [1]

[1]

(iii) Find the distance the object travels in the first three seconds.

QUESTION 3 [5 MARKS]

A metal ball is cooling down according to the formula $T = T_0 e^{-kt}$ where T is the temperature (in degrees Celsius) and t is the time in minutes. The initial temperature of the ball is 50°C and it cools to 43°C after 15 minutes.

- (a) Show that k = 0.01. [2]
- (b) Find the temperature after 1 hour.
- (c) How long it takes to reach a room temperature of 21°C [2]

QUESTION 4 [11 MARKS]

- (a) An arithmetic series has its sixth term equal to 18 and its eleventh term equal to 43. Find the series and write down the first three terms. [2]
- **(b)** Evaluate $\sum_{n=1}^{n=8} 3^n$ [2]
- (c) An employee earns \$48,000 in their first year, with the wage increasing by 5% of the previous year's wage. Find:
 - (i) The employee's annual wage at the start of the sixth year.
 - (ii) The total earnings (before tax) in the first five years. [2]
- (d) A sum of \$2,000 is invested at the start of every six months in a superannuation fund and accumulates every six months at an annual interest rate of 10%p.a.
 - (i) Find the value of the fund at the end of the first year. [1]
 - (ii) Show that at the end of n years, the fund has grown to $$40,000(1.05)(1.05^{2n}-1)$. [3]

Standard integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

$$x = t^{3} - 4t^{2} - 3t$$

$$v = \frac{dt}{dt} = 3t^{2} - 8t - 3$$

$$v = -3 \text{ m/s}$$

(b) The particle is at rest when
$$n^2 = 0$$

i. $3t^2 - 8t - 3 = 0$

(3t + 1)(t - 3) = 0

i. $t = 3, -\frac{1}{3}$

i.e. $t = 3$ smile $t \neq 0$

(c)
$$a = \frac{dw}{dt} = 6t - 8$$

at $t = 4$, $a = 6(4) - 8 = 16 \text{ m/s}^2$

(d)
$$x = t^3 - 4t^2 - 3t$$

= $t(t^2 - 4t - 3)$

when z = 0, t = 0 and $t^2 - 4t - 3 = 0$.

Solving
$$t^2 - 4t - 3 = 0$$
, $t = \frac{-(4) \pm \sqrt{(-4)^2 - 4(1)(-3)^2}}{2}$
 $= \frac{4 \pm \sqrt{16 + 12}}{2}$
 $= \frac{4 \pm \sqrt{5}}{2}$

Amie + >0, += 2+17.

in. at x=0, t=0, 2+17 seconds.

 $\alpha = -4 \cos 2t$ $0 = \int (-4 \sin 2t) dt$ $0 = 2 \cos 2t + c, \qquad \frac{1}{2}$ $1 = 2 + c, \qquad i.c. = 0$ $1 = 2 \cos 2t dt$ $2 = 2 \cos 2t dt$ $2 = \sin 2t + c_{2}$ $3 = \sin 2t - 4$ $4 = \sin 2t - 4$ $3 = \sin 2t - 4$ $4 = \sin 2t - 4$ $5 = \sin 2t - 4$ $5 = \sin 2t - 4$ $6 = \cos 2t - 4$ $1 = \cos 2t - 4$ 1

(b) (1) The object is not accelerating when the relocated is constant.

This occurs between 1 and 3 seconds.

(11) The object decelerates between 3 s and 6 s. from 4 m s 1 to 0 ms 1

1. rate deceleration: - speed = 4-0

+ time = 6-3

3 ms-2 m/5

(HI) $x = \int n dt$ = area from 0 s to 3 s. = $\frac{1}{2} + (2+3)$ (area of trope zewm).

$$T = T_0 e^{-ht}$$

At t = 0, $T = 50$.
 $1 \cdot 50 = T_0 e^{-h(0)}$
 $50 = T_0 (1)$
 $T_0 = 50$.

(1)
$$T = 50.2$$

43 = 50.2 - 15k.

$$e^{-15h} = \frac{43}{50} = 0.86$$
.

$$h = -\frac{\ln 0.86}{15} = 0.0/00$$

For
$$t = 60$$
,
 $T = 50 l^{-(0.01)} 60$.
 $= 27.44^{\circ} C$

$$t = \frac{\ln 0.112}{-0.01}$$
 mins = 86.75 mins

(a)
$$T_6 = 18 = 0.45d$$

 $T_{11} = 43 = 0.45d$
 $5d = 25$
 $d = 5$

Sames
$$\dot{u} = -7, -2, 3$$

(b)
$$\sum_{n=1}^{\infty} 3^n$$

= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - - 3^8$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3^2$
= $3 + 3^2 + - 3$

(1)
$$A = P(1 + \frac{r}{100})^{n}$$
 $P = 48,000$
 $r = 5\% pa$
 $= 48,000(1 + \frac{5}{100})^{5}$ $n = 5 yrs$
 $= 48,000(1 \cdot 05)^{5}$
 $= 4$

(11) Total earnings:
$$48,000 + 48000(1.05) + 48000(1.05)^2 + ...$$

Total amount :
$$2000 \left[1.12 + 1.12^2 + - - 1012 \right]$$

= $2000 \left[\frac{1.12}{1.12-1} + - - 1012 \right]$
= $2000 \left(1.12 \right) \left(1.12 + 0 - 1 \right)$
= $2000 \left(1.12 \right) \left(1.12 + 0 - 1 \right)$

het
$$A_n$$
 be amount of n ho
(1) $A_1 = 2000 (1.05)$
 $A_2 = 2000 (1.05) + 2000 (1.05)$
 $= 2000 (1.05 + 1.05^2)$

1.12 40 (11)
$$A_3 = 2000 (1.05 + 1.05^2 + 1.05)$$

Continuing this pattern
$$A'_{2n} = 2000 (1.05 + --1.0)$$

$$= 2000 (1.05) (1.05^{2n} - 1)$$

$$= 40,000 (1.05) (1.05^{2n} - 1)$$